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Abstract. Given a filter ∆ in the poset of compositions of n, we form the filter Π∗∆
in the partition lattice. We determine all the reduced homology groups of the order
complex of Π∗∆ as Sn−1-modules in terms of the reduced homology groups of the sim-
plicial complex ∆ and in terms of Specht modules of border shapes. We also obtain the
homotopy type of this order complex. These results generalize work of Calderbank–
Hanlon–Robinson and Wachs on the d-divisible partition lattice. Our main theorem
applies to a plethora of examples, including filters associated to integer knapsack par-
titions and filters generated by all partitions having block sizes a or b. We also obtain
the reduced homology groups of the filter generated by all partitions having block sizes
belonging to the arithmetic progression a, a + d, . . . , a + (a− 1) · d, extending work of
Browdy.

Résumé. Étant donné un filtre ∆ dans l’ensemble ordonné des compositions de n, nous
formons le filtre Π∗∆ dans le treillis de partitions. Nous déterminons tous les groupes
d’homologie réduits du complex des chaînes de Π∗∆ comme Sn−1-modules en termes
des groupes d’homologie réduits du complexe simplicial ∆ et des modules de Specht
des bandes frontalières. Nous arrivons aussi à déterminer le type d’homotopie de ce
complex des chaînes. Ces résultats généralisent les travaux de Calderbank–Hanlon–
Robinson et de Wachs sur le treillis des partitions d-divisibles. Notre théor‘eme princi-
pal s’applique à une pléthore d’exemples, y compris les filtres associés aux partitions
entier sac-à-dos et les filtres engendrés par toutes les partitions dont la taille des blocs
est a ou b. En généralisant le travail de Browdy, nous obtenons aussi les groupes
d’homologie réduits du filtre engendré par toutes les patitions dont les tailles de bloc
appartiennent à la suite arithmétique a, a + d, . . . , a + (a− 1) · d.

Keywords: Partition lattice, Composition lattice, Specht module, Equivariant Quillen’s
Fiber Lemma, Frobenius complex

1 Introduction

In his physics dissertation Sylvester [13] considered the even partition lattice, that is, the
poset of all set partitions where the blocks have even size. He computed the Möbius
function of this lattice and showed that it equals, up to a sign, the tangent number. Stan-
ley then introduced the d-divisible partition lattice. This is the collection of all set parti-
tions with blocks having size divisible by d, denoted by Πd

n. He showed that the Möbius



2 Richard Ehrenborg and Dustin Hedmark

function is, up to a sign, the number of permutations in the symmetric group Sn−1 with
descent set {d, 2d, . . . , n− d}; see [10].

Calderbank, Hanlon and Robinson [5] continued this work by studying the top ho-
mology group of the order complex4(Πd

n−{1̂}) and gave an explicit description of the
Sn−1-action on this homology group in terms of a Specht module. However, they were
unable to obtain the other homology groups and asked Wachs if it was possible that
the complex 4(Πd

n − {1̂}) was shellable, which would imply that the other homology
groups are trivial. Wachs [14] proved that this was indeed the case by showing that the
poset Πd

n ∪{0̂} is EL-shellable, and thus the homotopy type of the complex4(Πd
n−{1̂})

is a wedge of spheres of the same dimension. Additionally, Wachs gave a different proof
for the Sn−1-action on the top homology of Πd

n, as well as matrices for the action of Sn
on this homology.

Ehrenborg and Jung [7] further generalized the d-divisible partition lattice by defining
a subposet Π∗~c of the partition lattice for a composition ~c of n. The subposet reduces to
the d-divisible partition lattice when the composition ~c is given by ~c = (d, d, . . . , d).
Their work consists of three main results. First, they showed that the Möbius function of
Π∗~c ∪ {0̂} equals, up to a given sign, the number of permutations in Sn ending with the
element n having descent composition ~c. Second, they showed that the order complex
4(Π∗~c − {1̂}) is homotopy equivalent to a wedge of spheres of the same dimension.
Lastly, they proved that the action of Sn−1 on the top homology group of 4(Π∗~c − {1̂})
is given by the Specht module corresponding to the composition ~c− 1.

In the current paper we continue this research program by considering a more general
class of filters in the partition lattice. Let ∆ be a filter in the poset of compositions.
Since the poset of compositions is isomorphic to a Boolean algebra, the filter ∆ under
the reverse order is a lower order ideal and hence can be viewed as the face poset of
a simplicial complex. We define the associated filter Π∗∆ in the partition lattice. This
extends the definition of Π∗~c . In fact, when ∆ is a simplex generated by the composition~c
the two definitions agree.

Our main result is that we can determine all the reduced homology groups of the
order complex 4(Π∗∆− {1̂}) in terms of the reduced homology groups of links in ∆ and
of Specht modules of border shapes; see Theorem 7.5. The proof proceeds by showing
that if the result holds for the two complexes ∆, Γ and also for their intersection ∆ ∩ Γ,
then it holds for their union ∆ ∪ Γ. Furthermore, the proof relies on Mayer–Vietoris
sequences to construct the isomorphism of Theorem 6.3. As our main tool, we use
Quillen’s fiber lemma to translate topological data from the filter Q∗∆ to the filter Π∗∆.

We also present a second proof of our main result, Theorem 6.3, using an equivariant
poset fiber theorem of Björner, Wachs and Welker [3]. Even though this approach is
concise, it does not yield an explicit construction of the isomorphism of Theorem 6.3.
In particular, our hands on approach using Mayer–Vietoris sequences reveals how the
homology groups of 4(Π∗∆ − {1̂}) are changing as the complex ∆ is built up. Once
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again, the Ehrenborg–Jung result on Q∗~c is needed to apply the poset fiber theorem.
Our main result yields explicit expressions for the reduced homology groups of the

complex 4(Π∗∆ − {1̂}), most notably when ∆ is homeomorphic to a ball or to a sphere.
The same holds when ∆ is a shellable complex. We are able to describe the homotopy
type of the order complex4(Π∗∆−{1̂}) using the homotopy fiber theorem of [3]. Again,
when ∆ is homeomorphic to a ball or to a sphere, we obtain that Π∗∆ is a wedge of
spheres. We are also able to lift discrete Morse matchings from ∆ and its links to form a
discrete Morse matching on the filter of ordered set partitions Q∗∆.

In Section 8 we study the case when Λ is a semigroup of positive integers and we
consider the filter of partitions whose block sizes belong to the semigroup Λ. When Λ
is generated by the arithmetic progression a, a + d, a + 2d, . . . we are able to describe the
reduced homology groups of the associated filter in the partition lattice. The particular
case when d divides a was studied by Browdy [4], where the filter Λ consists of partitions
whose block sizes are divisible by d and are greater than or equal to a. Finally, in
Section 9 we study the filter corresponding to the semigroup generated by two relative
prime integers. Here we are able to give explicit results for the top and bottom reduced
homology groups.

Other previous work in this area is due to Björner and Wachs [2]. Additionally,
Sundaram studied the subposet of the partition lattice defined by a set of forbidden
block sizes using plethysm and the Hopf trace formula; see [11, 12].

We end the paper by posing questions for further study.

2 Integer and set partitions

We define an integer partition λ to be a finite multiset of positive integers. Thus the
multiset λ = {λ1, λ2, . . . , λk} is a partition of n if λ1 + λ2 + · · · + λk = n. Let In be
the set of all integer partitions of n. We form a poset on these integer partitions where
the cover relation is given by adding two parts. In terms of multisets the cover relation
is {λ1, λ2, λ3, . . . , λk} ≺ {λ1 + λ2, λ3, . . . , λk}. Note that the partition {1, 1, . . . , 1} is the
minimal element and {n} is the maximal element in the partial order.

Let Πn denote the poset of all set partitions of [n] = {1, 2, . . . , n} where the partial
order is given by merging blocks, that is, {B1, B2, B3, . . . , Bk} ≺ {B1 ∪ B2, B3, . . . , Bk}. The
poset Πn is in fact a lattice, called the partition lattice. Let |π| denote the number of
blocks of the partition π. Furthermore, for a set partition π = {B1, B2, . . . , Bk} define its
type to be the integer partition of n given by the multiset type(π) = {|B1|, |B2|, . . . , |Bk|}.

The symmetric group Sn acts on subsets of [n] by relabeling the elements. Simi-
larly, the symmetric group Sn acts on the partition lattice by relabeling the elements
of the blocks. For π = {B1, B2, . . . , Bk} a set partition the action is given by α · π =
{α(B1), α(B2), . . . , α(Bk)}. Finally, when we speak about the action of the symmetric
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group Sn−1, we view the group Sn−1 as the subgroup {α ∈ Sn : αn = n} of the
symmetric group Sn.

3 Compositions and ordered set partitions

A composition~c = (c1, c2, . . . , ck) of n is an ordered list of positive integers such that c1 +
c2 + · · ·+ ck = n. Let Comp(n) be the set of all compositions of n. We make Comp(n)
into a poset by introducing the cover relation given by adding adjacent entries, that is,
(c1, . . . , ci, ci+1, . . . , ck) ≺ (c1, . . . , ci + ci+1, . . . , ck). The poset Comp(n) is isomorphic to
the Boolean algebra on n− 1 elements. Note that (1, 1, . . . , 1) and (n) are the minimal
and maximal elements of Comp(n), respectively. Define the type of a composition ~c =
(c1, c2, . . . , ck) to be the integer partition type(~c ) = {c1, c2, . . . , ck} of n. Furthermore, let
|~c | denote the number of parts of the composition ~c.

For α ∈ Sn, let the descent set of α, denoted by Des(α), be the subset of [n− 1] given
by Des(α) = {i ∈ [n− 1] : α(i) > α(i+ 1)}. Throughout this paper it will be more conve-
nient to consider Des(α) as a composition of n, namely, if Des(α) = {i1 < i2 < · · · < ik},
then we consider Des(α) as a composition of n given by Des(α) = (i1, i2 − i1, . . . , ik −
ik−1, n− ik). Note that the identity permutation (1, 2, . . . , n) has descent composition (n).

Let βn(~c ) be the number of permutations α in Sn such that Des(α) = ~c. Likewise,
define β∗n(~c ) to be the number of permutations α in Sn with descent composition ~c and
α(n) = n.

An ordered set partition σ = (C1, C2, . . . , Cp) of [n] is a list of non-empty blocks such
that the set {C1, C2, . . . , Cp} is a partition of the set [n], where the order of the blocks
now matters. Let |σ| denote the number of blocks in the ordered set partition σ.

Let Qn be the set of all ordered set partitions on the set [n]. Introduce a partial order
on Qn where the cover relation is joining adjacent blocks, that is, (C1, . . . , Ci, Ci+1, . . . , Cp)
≺ (C1, . . . , Ci ∪ Ci+1, . . . , Cp). Observe that the poset Qn has the maximal element ([n]),
along with n! minimal elements, namely the ordered set partitions ({α1}, {α2}, . . . , {αn}),
one for each permutation α1α2 · · · αn ∈ Sn. Moreover, every interval in Qn is isomorphic
to a Boolean algebra.

Define the type of an ordered set partition σ = (C1, C2, . . . , Ck) to be the composition
of n given by type(σ) = (|C1|, |C2|, . . . , |Ck|). Finally, the symmetric group Sn acts on
ordered set partitions by relabeling, that is α · (C1, C2, . . . , Ck) = (α(C1), α(C2), . . . , α(C1)).

4 Topological considerations

Let P be a poset. Recall the order complex of P, denoted 4(P), is the simplicial complex
whose i-dimensional faces are the chains in P with i + 1 elements. If P has a minimal
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element 0̂ or a maximal element 1̂, then 4(P) is a contractible complex. Thus we will be
removing these elements to ensure interesting topology.

Recall a simplicial complex ∆ is a finite collection of sets such that the empty set
belongs to ∆ and ∆ is closed under inclusion. We will find it easier to view a simplicial
complex as a partially ordered set ∆ such that (i) ∆ has a unique minimal element 0̂
and (ii) every interval [0̂, x] for x ∈ ∆ is isomorphic to a Boolean algebra. A poset P
satisfying these conditions is called a simplicial poset. Notice that a poset P is simplicial if
P is the face poset of a simplicial complex. Furthermore, note that the second condition
in the definition of a simplicial poset makes the poset ∆ ranked since every saturated
chain between the minimal element 0̂ and an element x has the same length. Thus the
dimension of an element x is defined by its rank minus one, that is, dim(x) = ρ(x)− 1.

A filter in a poset P is an upper order ideal. Hence if F is a filter in P, then the dual
filter F∗ in the dual poset P∗ is now a lower order ideal. In particular, if ∆ ⊆ Comp(n)
is a filter, since upper order ideals in Comp(n) are isomorphic to Boolean algebras, the
dual of ∆ is a simplicial poset in the dual space Comp(n)∗, which has cover relation
given by splitting rather than merging. To emphasize that we have dualized, we use ≤∗
to denote the order relation in the dualized Comp(n).

Lastly, the link of a face F in a simplicial complex ∆ is given by lkF(∆) = {G ∈
∆ : F ∪ G ∈ ∆, F ∩ G = ∅}. However, working with the poset definition of a simplicial
complex, we have the following equivalent definition of the link. The link is the principle
filter generated by the face x, that is, lkx(∆) = {y ∈ ∆ : x ≤ y}. One advantage of this
definition is that we do not have to relabel the faces when considering the link.

From now on our simplicial complex ∆ will be a filter in the composition lattice,
Comp(n), with the dual order ≤∗.

Finally, for simplicial complexes ∆ and Γ in Comp(n) and Comp(m) respectively,
their join is defined to be poset ∆ ∗ Γ = {~c ◦ ~d : ~c ∈ ∆, ~d ∈ Γ}, where ◦ denote the
concatenation of compositions.

5 Border strips and Specht modules

A border strip B is a connected skew-shape which does not contain a two by two square.
For each composition ~c = (c1, c2, . . . , ck) there is a unique border strip such that the
number of boxes in the ith row is given by ci and every two adjacent rows overlap in one
position. Denote this border strip by B(~c ).

We now define two operations on compositions. The motivation comes from the
associated Specht and permutation modules. For a composition ~c = (c1, . . . , ck−1, ck) let
~c− 1 denote the composition (c1, . . . , ck−1, ck− 1) if ck ≥ 2, and otherwise let~c− 1 denote
the empty composition. Similarly, let ~c/1 denote the composition (c1, . . . , ck−1, ck − 1) if
ck ≥ 2, and otherwise let ~c/1 denote the composition (c1, . . . , ck−1). Note that if ~c is a
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composition of n then ~c/1 is always a composition of n− 1.
For a composition ~c of n let B∗(~c ) denote the border strip B(~c− 1). All our results

of this paper are stated in terms of the Specht modules SB∗(~c ) where the group action
is by Sn−1. We think of this Specht module as a submodule of SB(~c ) spanned by all
standard Young tableaux where the northeastern-most box is filled with n. Note that
when the composition ends with the entry 1, there are no such standard Young tableaux,
and hence SB∗(~c ) is the zero module.

6 The ordered partition filter Q∗∆
We now introduce the ordered partition filter Q∗∆. This filter will serve us as an im-
portant stepping stone to understanding the topology of general filters in the partition
lattice. The transition from Q∗∆ to the partition lattice uses Quillen’s Fiber Lemma; see
Section 7. Note that by considering the reverse orders in Comp(n) and in Qn we ob-
tain two simplicial posets. Hence for ∆ a non-empty filter in Comp(n), we view ∆ as a
simplicial complex under the reverse order ≤∗. See the discussion in Section 4.

Definition 6.1. Let ∆ be a filter in Comp(n), that is, ∆ is a simplicial complex consisting of
compositions of n. Define the ordered partition filter Q∗∆ to be all ordered set partitions whose
type is in the complex ∆ and whose last block contains the element n, that is,

Q∗∆ = {σ = (C1, C2, . . . , Ck) ∈ Qn : type(σ) ∈ ∆, n ∈ Ck}.

Note that we view Q∗∆ as a simplicial complex. Our purpose is to study the reduced
homology groups of this complex.

Recall that the link of a composition ~c in ∆ is the filter lk~c(∆) = {~d ∈ ∆ : ~d ≤∗ ~c },
where ≤∗ is the reverse of the partial order of Comp(n). Since lk~c(∆) is now a simplicial
poset with minimal element ~c, we have a dimension shift from ∆ to lk~c(∆) given by

dimlk~c(∆)(
~d ) = dim∆(~d )− |~c |+ 1 (6.1)

for ~d ∈ lk~c (∆). A special case of Q∗∆ is when the simplicial complex ∆ is a simplex, that
is, ∆ is generated by one composition ~c. This case was studied by Ehrenborg and Jung
in [7]. Their results are given below.

Theorem 6.2 (Ehrenborg–Jung). Let~c be a composition of n into k parts. Then the complex Q∗~c
is a wedge of β∗n(~c ) spheres of dimension k− 2. Furthermore, the top homology group H̃k−2(Q∗~c )
is isomorphic to the Specht module SB∗(~c ) as an Sn−1-module.

Note that Ehrenborg and Jung formulated their result in terms of pointed set parti-
tions. That is, our notation Q∗~c is ∆~d in their notation, where ~d = (c1, . . . , ck−1, ck − 1).
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They allow the last entry of a composition to be zero and similarly the last entry of an
ordered set partition to be empty. Moreover, our notation Π∗~c is in their notation Π•~d.

We can now state the main result of this section.

Theorem 6.3. Let ∆ be a simplicial complex of compositions of n. Then the ith reduced homology
group of the simplicial complex Q∗∆ is given by

H̃i(Q∗∆) ∼=
⊕
~c∈∆

H̃i−|~c |+1(lk~c (∆))⊗ SB∗(~c ).

Furthermore, this isomorphism holds as Sn−1-modules.

7 Filters in the set partition lattice

In Theorem 6.3 we characterized each homology group of Q∗∆, a subspace of ordered set
partitions. We will now translate the topological data we have gathered on Q∗∆ into data
on the usual partition lattice Πn.

Recall that Q∗∆ is the collection of ordered set partitions containing the element n in
the last block, whose type is contained in the simplicial complex ∆ ⊆ Comp(n). Define
the forgetful map f : Q∗∆ −→ Πn given by removing the order between blocks, that is,
f ((C1, C2, . . . , Ck)) = {C1, C2, . . . , Ck}.

Definition 7.1. Let Π∗∆ ⊆ Πn be the image of Q∗∆ under the forgetful map f .

Lemma 7.2. Suppose that F is a filter in the integer partition lattice. Let ∆F be the filter of
compositions given by {~c ∈ Comp(n) : type(~c ) ∈ F}. Then the associated filter Π∗∆F

in the
partition lattice is given by {π ∈ Πn : type(π) ∈ F}.

Remark 7.3. In general, taking the image of a filter ∆ ⊆ Comp(n) under the map type
does not define a filter in the integer partition lattice In. For example, consider the sim-
plex ∆ in Comp(6) generated by (3, 2, 1). Note that type(∆) consists of the four partitions
{{3, 2, 1}, {3 + 2, 1}, {3, 2 + 1}, {3 + 2 + 1}} = {{3, 2, 1}, {5, 1}, {3, 3}, {6}}. This is not a
filter in I6 since it does not contain the partition {4, 2}.

The Sn−1 action on Π∗∆ extends to the chains in the order complex 4(Π∗∆ − {1̂}).
For the equivariant version of the Quillen Fiber Lemma, see [15, Theorem 5.2.2].

Proposition 7.4. The forgetful map f : Q∗∆ − {1̂} −→ Π∗∆ − {1̂} = P satisfies the condition of
Quillen’s Equivariant Fiber Lemma, that is, for a partition π = {B1, B2, . . . , Bk} in P, the order
complex 4( f−1(P≥π)) is the barycentric subdivision of a cone, and is therefore contractible and
acyclic.

Combining Proposition 7.4 with Theorem 6.3, we have the following result for the
homology of the order complex 4(Π∗∆ − {1̂}).
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Theorem 7.5. The ith reduced homology group of the order complex of Π∗∆ − {1̂} as an Sn−1-
module is given by

H̃i(4(Π∗∆ − {1̂})) ∼=Sn−1

⊕
~c∈∆

H̃i−|~c |+1(lk~c (∆))⊗ SB∗(~c ).

8 The Frobenius complex

We now consider a class of examples stemming from [6]. Let Λ be a semigroup of
positive integers, that is, a subset of the positive integers which is closed under addition.
Let ∆n be the collection of all compositions of n whose parts belong to Λ, that is,

∆n = {(c1, . . . , ck) ∈ Comp(n) : c1, . . . , ck ∈ Λ}.

Since Λ is closed under addition, we obtain that ∆n is a filter in the poset of composi-
tions Comp(n) and hence we view it as a simplicial complex. This complex is known as
the Frobenius complex; see [6]. Moreover, since Λ is a semigroup, the collection of inte-
ger partitions of n with parts in Λ is a filter, therefore, using Lemma 7.2 the associated
filter in the partition lattice is given by

ΠΛ
n = {{B1, . . . , Bk} ∈ Πn : |B1|, . . . , |Bk| ∈ Λ}.

We continue by studying one concrete example. Let a and d be two positive inte-
gers. Let Λ be the semigroup generated by the arithmetic progression Λ = 〈a, a + d, a +
2d, . . .〉. Since for j ≥ a we have that a + j · d = d · a + a + (j − a) · d, the semigroup
is generated by the finite arithmetic progression Λ = 〈a, a + d, a + 2d, . . . , a + (a− 1)d 〉.
Clark and Ehrenborg proved that the Frobenius complex ∆n is a wedge of spheres of
different dimensions; see [6, Theorem 5.1]. Observe that their result is formulated in
terms of sets, instead of compositions. However, the two notions are equivalent via
the natural bijection given by sending a composition (c1, c2, . . . , ck) of n to the subset
{c1, c1 + c2, . . . , c1 + · · ·+ ck−1} of the set [n− 1]. To state their result, let A be the set
{a + d, a + 2d, . . . , a + (a− 1) · d}.

Proposition 8.1. For n in the semigroup Λ, there is a discrete Morse matching on the Frobenius
complex ∆n such that the critical cells are compositions ~c = (c1, . . . , ck) characterized by (i) All
but the last entry of the composition belongs to the set A, that is, c1, . . . , ck−1 ∈ A. (ii) The last
entry ck belongs to {a} ∪ A. Furthermore, all the critical cells are facets.

Call the sum c1 + c2 + · · ·+ cj an initial sum of a composition (c1, c2, . . . , ck) for j ≤ k.

Definition 8.2. For an interval [~d,~b ] in the lattice of compositions Comp(n) let B∗(~d,~b ) be
the skew-shape where the row lengths are given by d1, d2, . . . , dr−1, dr − 1 and if the initial sum
d1 + · · ·+ dj is equal to an initial sum of the composition~b− 1, then jth row and the (j + 1)st
row overlap in one column. All other rows of B∗(~d,~b ) are non–overlapping.
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Definition 8.3. For a composition ~d of n with entries in the set {a} ∪ A let~b(~d ) be the compo-
sition greater than or equal to ~d obtained by adding runs of entries of ~d together where each run
ends with the entry a.

Theorem 8.4. Let a and d be two positive integers and let ΠΛ
n be the filter in the partition lat-

tice Πn where each partition π consists of blocks whose cardinalities belong to the semigroup Λ
generated by the arithmetic progression a, a + d, . . . , a + (a− 1) · d. Then the ith reduced homol-
ogy group of the order complex 4(ΠΛ

n − {1̂}) is given by the direct sum

H̃i(4(ΠΛ
n − {1̂})) ∼=Sn−1

⊕
~d

SB∗(~d,~b(~d )),

where the sum is over all compositions ~d into i + 2 parts such that every entry belongs to the set
{a} ∪ A = {a, a + d, a + 2 · d, a + (a− 1) · d}.

Example 8.5. When the integer d divides the integer a, the homology groups of ΠΛ
n have

been studied. In this case, the filter ΠΛ
n consists of all partitions where the block sizes are

divisible by d and the block sizes are greater than or equal to a. This filter was studied by
Browdy [4], and our Theorem 8.4 reduces to Browdy’s result; see Corollary 5.3.3 in [4].

Example 8.6. The previous example is particularly nice when d = 1. The semigroup Λ
is given by Λ = {n ∈ P : n ≥ a} and the filter ΠΛ

n consists of all partitions where
1, 2, . . . , a− 1 are forbidden block sizes. In this case it follows by Billera and Meyers [1]
that ∆n is non-pure shellable. Additionally, Björner and Wachs [2] gave an EL-labelling
of ΠΛ

n ∪ {0̂}. This complex was also considered by Sundaram in Example 4.4 in [11].

9 The partition filter Π〈a,b〉
n

Let a and b be two relatively prime integers greater than 1. Let Π〈a,b〉
n be the filter

in Πn generated by all partitions whose block sizes are all a or b. As an example, Π〈2,3〉
n

consists of all partitions in Πn with no singleton blocks. The corresponding complex ∆n
in Comp(n) consists of all compositions of n whose parts are contained in the set 〈a, b〉 =
{i · a + j · b : a, b ∈N}. When a = 2 and b = 3 the complex ∆n is known as the complex
of sparse sets; see [6, 8].

Following Theorem 4.1 in [6], we define the set A = {n ∈ P : n ≡ 0, a, b or a +
b mod ab} and the function h : A −→ Z≥−1 as follows:

h(n) =


2n
ab − 2 if n ≡ 0 mod ab,
2(n−a)

ab − 1 if n ≡ a mod ab,
2(n−b)

ab − 1 if n ≡ b mod ab,
2(n−a−b)

ab if n ≡ a + b mod ab.



10 Richard Ehrenborg and Dustin Hedmark

Then Theorem 4.1 in [6] states that ∆n is either homotopy equivalent to a sphere or is
contractible, according to

∆n '
{

Sh(n) if n ∈ A,
point otherwise.

For a composition ~c = (c1, . . . , ck) of n with all of its parts in A, let dim(~c ) denote
the dimension of the reduced homology of 4(Π〈a,b〉

n − {1̂}) to which the composition ~c
contributes. That is, dim(~c ) is given by dim(~c ) = ∑k

i=1 h(ci) + 2k− 2.

Theorem 9.1. Let 2 ≤ a < b with gcd(a, b) = 1. Then the ith reduced homology group of
4(Π〈a,b〉

n − {1̂}) is given by the direct sum of Specht modules
⊕

~c∈Fi
SB∗(~c ), where Fi is the

collection of compositions~c of n where all the parts are in the set A with dim(~c ) = i.

We now describe the top and bottom reduced homology of the order complex ∆(Π〈a,b〉
n −

{1̂}). We begin with the top homology.

Proposition 9.2. Let 2 ≤ a < b with gcd(a, b) = 1. Let r be the unique integer such that
0 ≤ r < a and n ≡ rb mod a. Then the top homology of 4(Π〈a,b〉

n − {1̂}), which occurs in
dimension (n − r(b − a))/a − 2, is given by the direct sum of Specht modules

⊕
~c∈R SB∗(~c ),

where R is the collection of compositions~c of n where exactly r of the parts are equal to b or a + b,
and the remaining parts are all equal to a.

We now turn our attention to the bottom reduced homology.

Proposition 9.3. Let 3 ≤ a < b with gcd(a, b) = 1. Let r and s be the two unique integers
such that

n ≡ rb mod a, 0 ≤ r < a, n ≡ sa mod b and 0 ≤ s < b.

Then the bottom reduced homology of 4(Π〈a,b〉
n − {1̂}) occurs in dimension 2 · n−sa−rb

ab + r +
s− 2, and is given by the direct sum of Specht modules SB∗(~c ) over all compositions ~c such that
the number of parts of ~c of the form j · ab + a and j · ab + a + b is s and the number of parts of
the form j · ab + b and j · ab + a + b is r.

We end with a complete description in the case when a = 2.

Proposition 9.4. Let b be odd and greater than or equal to 3. Then the ith reduced homology
of 4(Π〈2,b〉

n − {1̂}) is given by the direct sum of Specht modules SB∗(~c ) over all compositions ~c
with all parts congruent to 0 or 2 modulo b, where exactly (b(i + 2)− n)/(b− 2) entries of ~c
are congruent to 2 modulo b. The bottom reduced homology occurs in dimension dn/be − 2.
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10 Concluding remarks

Using Theorem 7.5 we have been able to classify the action of Sn−1 on the top homology
of 4(Π∗∆ − {1̂}) for any complex ∆ ⊆ Comp(n). In the case when 4(Π∗∆ − {1̂}) is
shellable, is there an EL-labelling of Π∗∆ ∪ {0̂} that realizes this shelling order?

Is there a way we can classify the Sn-action on the homology groups of4(Π∗∆−{1̂})
rather than the Sn−1-action? Browdy described the matrices representing the action
of Sn on the cohomology groups of the filter with block sizes belonging to the arithmetic
progression k · d, (k + 1) · d, . . .; see [4, Section 5.4].

The partition lattice is naturally associated with the symmetric group, that is, the
Coxeter group of type A. Miller [9] has extended the results about the filter Π∗~c to other
root systems. Hence it is natural to ask if our results for the filter Π∗∆ can be extended to
other root systems.

Lastly, all of our results are based upon ∆ being a filter in the composition lattice
Comp(n). What if we remove the filter constraint? That is, let Ω be an arbitrary collection
of compositions of n not containing the extreme composition (n). Define Q∗Ω to be all
ordered set partitions σ = (C1, C2, . . . , Ck) such that type(σ) ∈ Ω and containing n in
the last block Ck. Let ΠΩ be the image of Q∗Ω under the forgetful map f . What can be
said about the homology groups and the homotopy type of the order complex 4(ΠΩ)?
We need to understand the topology of the links lk~c (Ω), even though these links are not
themselves simplicial complexes.
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